
Commodore External RAM

Expansion Cartridges

Dale A. Castello

Montgomery, AL

Transfer commands for your external storage area!

Editor's Note: Although the 1700 and 1750 Expansion RAM

modules will work on the C64, they draw about 200 milliamps

and the C64 powersupply can not handle the extra load. Should

you wish to use either of these with the C64, you 11 need a higher

output power supply. However, the Commodore 1764 External

RAM Expansion comes with a replacement power supply, and

Dale's software will also work with the 1764. Naturally, the

C128 supplies ample power for operating the expansion RAM in

64 mode with Dale's program.

After many months of anticipation, the expansion RAM car

tridge for the Cl 28 is finally available at local stores and by mail.

It comes in two versions: the 1700 contains 128K bytes of

memory and the 1750 contains 512K bytes. Only the 1750 is

readily available. This memory expansion cannot be directly

addressed like the resident memory banks internal to the C128.

Instead, access is established through the I/O space from $DF00

to $DF0A. Because the expansion cards use the computer's

direct memory access (DMA) capability, a memory bank con

taining the Cl 28 I/O space does not need to be turned on during

the actual transfer. Commodore recommends that transfers be

done with the 1MHz clock rate so as to avoid conflicts with the

memory bus access. Transfers at 2MHz can be done, if the VIC

screen is blanked and the instruction following the command

execution does not make a write to memory.

The card offers four functions:

(1) FETCH - transfers from external RAM to internal RAM

(2) STASH - transfers from internal RAM to external RAM

(3) SWAP - exchanges internal and external RAM

(4) VERIFY - compares internal and external RAM

C128 BASIC implements the first three of these functions. The

fourth function may be executed through use of pokes in C128

mode. A program to implement all four of these functions in C64

mode is discussed later in this article.

Physical Layout

The expansion RAM chips and DMA controller are housed in a

C128-colored, plastic unit which is 5 1/4 inches wide and

extends 4 1/2 inches behind the computer when plugged into

the expansion port. There is no edge connector on the unit to

permit other bus devices to be plugged into it. Inside the case are

the DMA controller chip and 16 memory chips. The chips are

either 64K by 1 bit for the 1700 or 256K by 1 bit for the 1750.

Wire straps on the card indicate that Commodore designed the

circuit card for 128K, 256K, and 512K byte configurations.

Internal Registers And Operation

The external RAM controller appears at I/O addresses $DF00

through $DF0A. Of these eleven addresses in the controller: one

is for status, three for control, and the rest for addresses. All of

the registers are read/write except the status register which is

read only.

In order to activate an operation, the starting memory locations

in internal and external RAM, the block size, some special

options, and the command must be written to the controller. The

actual transfer occurs either immediately following the write of

the command or after the next bank switch of the C128. The

latter feature permits the C128 banks to be reconfigured prior to

the transfer so that memory under I/O may be transferred.

The internal computer RAM starting address is placed in

$DF02/$DF03 in normal low/high byte order. The C128 bank

configuration must be set in $FF00 or in location 1 if you are

using a C64.

The external RAM is banked in increments of 64K bytes.

Because it is only possible to address 64K memory locations

using two bytes, the starting location in the external RAM

requires three locations. The location is given in normal low to

high order in $DF04 through $DF06. The values in $DF06 are

limited to 0-1 for the 1700 and 0-7 in the 1750. If the block of

data to be transferred extends across a bank boundary, the DMA

controller automatically increments the bank register.

The size of the transfer is set in locations $DF07 and $DF08 in

normal order. Transfers are limited to 64K bytes with all block

sizes normal except size value of zero means 64K.

The DMA controller also permits an interrupt to be set when it

completes its operation. Because the DMA controller disables

normal CPU processing on the C128, this capability is not used

The Transactor 38 September 1987: Volume 8, Issue O2



on the Cl 28. This means the interrupt must be processed by the

user's program and will not be handled by the operating system.

Location $DF09 is the interrupt mask for the controller. It works

in the same way as the interrupt mask registers on other I/O

devices. During a write, mask bit 7 determines if the interrupt

will be enabled or disabled. Two conditions may be set: bit 6

causes an flag at the end of an operation and bit 5 sets a flag if a

verify error occurs. The actual interrupt event is signalled by the

setting of bit 7 in the status register. A read of $DF00 (the status

register) will indicate which event caused the interrupt. Bits 6

and 5 of the status register have the same meaning as in the

interrupt mask register. A read of the status register is destruc

tive and will clear bits 5-7.

The status register has one more bit of interest. Bit 4 indicates

whether a 1700 or 1750 is attached. If the bit is set, a 1750 is

attached; otherwise, a 1700 is attached. The last two registers

determine the operation of the controller. The register at $DF01

is called the command register and the one at $DF0A is the

address control register.

During normal operation you will want both the internal and

external addresses to increment as each byte is transferred.

There are special cases where you would want to hold one

address constant, such as a direct transfer with I/O. Bits 6 and 7

at $DF0A are normally zero which permits both addresses to

increment. If bit 7 is set, the C128 address will be fixed. If bit 6 is

set, the external RAM address will be fixed.

The register at $DF01 is the command register. It is set after all

the other registers are set and determines the function to be

performed. All bits must be set during a single write to the

register. Bit 7 must always be set and it executes the function

specified by the other bits and registers. Setting bit 5 enables the

auto-reload feature. This causes the initial internal memory

start address, the external memory start address, and block

length to be reset after the function is completed to their values

before the function. This option is of value if the same addresses

are used repeatedly, such as the VIC screen in computer mem

ory. The user need only set the addresses which change be

tween commands. A disadvantage of the auto-reload feature is

that the reload will occur even after an error is found during a

verify operation. This destroys the address pointers to the

errored byte.

Setting bit 4 enables the bank switch delay. When selected, the

actual DMA transfer will not occur until the C128 bank is set by

a store to location $FF00. This is the mode of operation used by

C128 BASIC. It will not function properly in C64 operation.

Finally, bits 0-1 of the command determine the function:

Bit Function

0 0 Transfer from internal to external RAM (STASH)

0 1 Transfer from external to internal RAM (FETCH)

1 0 Exchange internal and external RAM (SWAP)

1 1 Compare internal and external RAM

After an operation is complete, the address registers will ad

vance by the length register. The length register will be set to

one unless auto-reload is enabled. If there is a bad byte detected

during a verify operation, the internal and external address

registers will point to one location beyond the mismatch.

C64 Operation

There are no commands built into the C64 BASIC to support the

external RAM. Therefore, the program accompanying this ar

ticle provides a BASIC extension of four new commands. The

syntax of the commands is the same as in the C128 BASIC

except an "@" has been added in front of each. The "@" is part

of the keyword and no space should follow it. Any valid expres

sion may be used for the arguments.

©FETCH <length>,<C64 addr>,<RAM addr>,<RAM bank>

©STASH <length>,<C64 addr>,<RAM addr>,<RAM bank>

©SWAP <length>,<C64 addr>,<RAM addr>,<RAM bank>

©COMPARE <length>,<C64 addr>,<RAM addr>,<RAM bank>

Where:

<length> range 0-65535 is size of memory block (0 means 64K)

<C64 addr> range 0-65535 is starting loc. in computer memory

<RAM addr> range 0-65535 is starting loc. in expansion mem.

<RAM bank>is expansion memory bank range 0-1 for 1700

range 0-7 for 1750

The wedge is activated by SYS 52992 and deactivated by SYS

53020. Care has been taken to permit other wedges to coexist

with the expansion RAM wedge provided it is the last wedge

activated. The code has been compacted so that it fits in $CF00-

$CFFF.

Applications

The application program provided in this article will permit the

graphics examples contained on the expansion-RAM demon

stration disk to be executed on a C64, provided changes are

made to C128 tokens and the graphics screen is properly

positioned. Other graphics programs may also be modified. The

author is currently working on a virtual disk which will permit

some graphics adventure games to be played without disk

access.

The availability of the space of three single sided disks at 1MHz

transfer rates permits a entirely new realm of games and

applications to be considered. One application I use is to place

my assembler on RAM and "fetch" it into memory when ever I

am ready to run it. I have also written a package to copy and

modify text adventure games to use the external RAM. Text

adventure games which have a lot of disk access come "alive"

when RAM instead of disk is used. High speed, single drive

copying of filled, single and double-sided disks without disk

swapping is great.

The Transactor 39 September 1987: Volume 8, Issue O2



$DFOO

$DF01

$DF02

$DF03

$DF04

$DF05

$DF06

$DF07

$DF08

$DF09

$DFOA

Figure

7

Status

Command

C128 Start

Address

External

RAM Start

Address

Block

Length

Intr.Mask

Addr.Cntrl

Expansion

LN

KF

HL

HF

OF

PJ

LD

GO

KO

--

GJ

GF

EN

FC

LI

JK

IA

FE

LP

PH

ID

AP

MK

FG

JA

JD

DE

IN

OM

CE

EP

JN

MN

OD

AF

01

EE

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

Interrupt

Execute

[

On/Off

Fix Cl28 Add

E

6

1: C64/C128 Expansion RAM Register

]nd Function

Reserved

Lnd Function

Fix RAM Add

RAM Commands: BASIC

rem save' '0:xram64.bas

rem ** this program

5

Verify Error

Auto-Load

4

512k RAM

No SFFOO

3

Reservec

Low-Byte

High-Byte

Low-Byte

High-Byte

Bank-Byte 0-1(1700)

1

■

Verify Error

Loader

',8

will create

rem ** a load and run module

rem ** disk called '

open 15,8,15: open

input#15,e,e$,b,c: if

: print e;e$;b;c: stop

on

xram64.obj' '

8,8,1 ,' '0: xram64.obi' '

ethen close 15

for j = 52992 to 53244: read >

: ch = ch + x: next: close8

if ch<>30308 then print'

: stop

print' '** finished! *

print' 'load xram64.

*' '

obj,8

print' 'sys53020: rem to <

end

data 0,207,162,

data 3,240, 18,

data 207, 173, 9,

data 8, 3,140,

data 207, 172, 69,

data 142, 8, 3,

data 84, 65, 83,

data 200, 83, 87,

data 80, 65, 82,

data 160, 0,132,

data 64,208,242,

data 56,253, 45,

data 244, 56,233,

data 189, 45,207,

data 208, 246, 230,

data 220, 200, 152,

data 144, 2,230,

data 7,223,141,

data 140, 2,223,

data 207, 140, 4,

data 242, 207, 201,

data 178, 173, 0,

data 192, 8,144,

data 140, 6,223,

The Transactor

70,

173,

3,

9,

207,

140,

200,

65,

197,

2,

162,

207,

128,

48,

2,

24,

123,

8,

141,

223,

0,

223,

4,

165,

Definition

2 1 0

Version Number

1 Reserved Transfer Type 0-3

0-7(1750)

.ow-Byte ($0000 means $10000)

High-Byte

HL

EF

EF

MJ

AJ

GP

JM

OB

1370

1380

data

data

1390 data

1400

1410

1420

1430

1440

print#8,chr$(x);

'checksum error!'

,1 and sys52992 tc

disable' '

160,

8,

141,

3,

200,

9,

70,

208,

0,

200,

0,

208,

208,

5,

232,

101,

32,

223,

3,

141,

240,

41,

192,

2,

207,204, I

3,141, 6E

69,207, 142

96,174, 6E

240, 7, 136

3, 96, 8C

69, 84, 67

67, 79, 71

76, 255, 25E

177, 122,201

200, 177, 122

3, 232, 20E

2,240, 17

240,214,232

160, 1,208

122, 133, 122

245,207, 14C

32, 242, 207

223, 32,242

5,223, 32

3, 76, 72

16,240, l

2, 176,236

160, 0, 14C

> enable' '

)

i

>

1

!

1

r

)

!
r

t

!
>

)

i

\

\

EN

GF

LJ

HN

DD

HD

KJ

LH

IP

PB

CM

IP

LJ

DB

KO

CF

KC

HO

MN

CN

GC

NA

NO

MM

JK

JG

MP

KN

PO

Al

EE

FN

OJ

FF

JD

LB

GM

CA

KN

GG

DE

FD

LM

NN

| DO

4O

data

data

data

data

data

reserved

'eserved

10, 223, 140, 9, 223, 120, 162, 245

164, 1,134, 1, 44, 0,223, 9

144,141, 1,223,165,122,208, 2

198,123,198,122,173, 0,223,141

12, 3,173, 2,223,141, 13, 3

173, 3,223,141, 14, 3,132, 1

88, 76, 67,207, 32,253,174, 32

158,173, 76,247,183

PAL Source Listing

1000 rem save' '0:xram64.pal' ',8

1010 rem «• pal 64 format **

1020 open 8,8,1/ '0:xram64.obj' '

1030 svs700

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

opto8

. =$cfOO

a program to implement external

ram function on a c-64 or

c128 inc64mode

dale a. castello

5964 oakleigh rd

montgomery al 36116

implements basic extensions

©stash <bytes>,<addr1 >,<addr2>,<bank>

©fetch <bytes>,<addr1 >,<addr2>,<bank>

©compare <bytes>,<addr1>,<addr2>,<bank>

©swap <bytes>,<addr1 >,<addr2>,<bank>

whsrG

<bytes> = number of bytes to transfer 0-65535

0 = > 65536 bytes

<addr1> = computer start address 0-65535

<addr2> = ram start address 0-65535

<bank> = ram bank number

0-1 fnr 1700W 1 \\J\ 1 1 \S\J

0-7 for 1750

activate sys 52992 (ScfOO)

deactivate sys 53020 ($cf 1 c)

on sxit

areg status $20 okay

$40 verify error

xreg/yreg last computer address

1380;

1390 and = 2 ;expansion command

1400 txtptr = $7a ;current byte of basic text

1410 areg = $30c ;storage of a reg

1420xreg = $30d ;storage of x reg

1430 yreg = $30e ;storage of y reg

1440igone = $308 ;basic token eval

September 1987: Volume 8, Issue O2



PL

OJ

DF

LA

LK

CF

JL

IP

CA

LN

PD

01

HG

KG

HI

Cl

JC

DE

EN

IN

OF

CP

HL

MO

OP

DE

FD

OC

NH

LK

FM

GF

JK

AO

EH

HB

EH

AD

GF

EE

ML

EF

HN

BF

IN

LB

LE

GP

IN

HJ

OF

ND

CL

IB

NN

GE

CF

KF

MO

GP

CA

Nl

PA

MK

AK

HL

PN

OL

FL

EO

IL

JG

AP

KM

EA

NC

HC

CC

JB

JJ

FB

KE

KJ

OF

OM

GH

MH

CD

1450 exp

1460c64

1470 ram

1480 bank

1490 leng

1500;

1510 active

1520

1530

1540

1550

1560;

1570

1580

1590

1600

1610

1620

1630;

1640 inpl

1650

1660;

1670inact

1680

1690

1700

1710

1720;

1730

1740

1750

1760;

1770 nogo

1780

1790;

1800 table

1810

1820

1830

1840

1850

1860

1870

1880

1890;

1900oldvec

1910

1920;

1930 parse

1940

1950

1960

1970

1980

1990

2000;

2010

2020;

2030 nxt

2040

2050

2060

2070

2080

2090;

2100

2110

2120;

2130 last

2140

2150

2160

2170;

2180

2190;

m

=

=

=

= ,

Idx

Idy

cpy

beq

Ida

sta

Ida

sta

stx

sty

= ,

rts

= .

Idx

Idy

iny

beq

dey

stx

sty

= ,

rts

= •

.asc

SdfOO

exp+ 2

exp+ 4

exp + 6

exp+ 7

#<parse

#>parse

igone+1

inpl ■

igone

oldvec +1

igone + 1

oldvec+ 2

igone

igone+1

oldvec +1

oldvec + 2

nogo

igone

igone +1

'stas''

,byte$c8

.asc 'fete' '

.byte $c8

.asc 'swa''

.byte$dO

.asc 'compar' '

.byte$c5,0

= *

imp

= *

Idy

sty

iny

Ida

cmp

bne

Idx

= .

iny

Ida

sec

sbc

bne

inx

bne

= *

sec

sbc

bne

beq

$ffff

#0

cmd

(txtptr).y

oldvec

#0

(txtptr).y

table.x

last

nxt

#$80

skip

found

;dma controller

;if page$cf

;already installed

;if $ff is hi addr

;don't restore

;address set to old error vector on activation

;scan basic text

;initial command number

; point to next character

;no leading®

;init table pointer

;get next input character

;check text

;may be shifted

;okay so far

; loop for next match

;check for shifted

;check for shifted

character

;matchs string

2200 ; no match found so advance to

2210 ; next command string

2220;

2230 skip

2240

2250

2260;

2270

2280;

2290

2300

2310;

2320 nxcmd

The Transactor

= *

Ida

bmi

beq

inx

bne

= *

table.x

nxcmd

oldvec

skip

;reached shifted char

;error end of table

; keep going

41

PD

AA

CB

JH

IL

NM

EN

GN

DN

KD

FD

OP

EC

KH

AL

GC

MD

KD

JK

KN

JD

FK

Bl

BF

EN

KC

PN

CG

IB

10

KB

GM

ED

AA

EO

GN

HK

LM

HF

GB

BE

NN

ED

HG

KF

10

MF

MM

KN

JA

JF

OF

OB

Fl

HO

NK

IN

PD

DD

CL

JK

KC

MP

BO

AB

OC

MH

DL

ID

DH

KL

MG

IH

LP

JP

OK

II

HG

MJ

OM

HP

KL

DC

FD

LA

CO

CF

2330

2340

2350

2360

2370;

inc

inx

Idy

bne

cmd

#1

nxt

2380 ; we have found the mater

2390; read parameters

2400;

2410 found

2420

2430

2440

2450

2460

2470

2480;

2490

2500;

2510 nopage

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640;

2650 toobig

2660

2670;

2680 limit

2690

2700

2710

2720;

2730

2740

2750;

2760 r128

2770

2780

2790;

2800 inside

2810

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950;

2960

2970;

2980 notb

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090;

= *

iny

tya

clc

adc

sta

bec

inc

_ ,

jsr

sty

sta

jsr

sty

sta

jsr

sty

sta

jsr

cmp

beq

= »

imp

a *

Ida

and

beq

cpy

bec

= ,

cpy

bes

= *

sty

Ida

Idy

sty

sty

sei

Idx

Idy

stx

bit

ora

sta

Ida

bne

dec

= *

dec

Ida

sta

Ida

sta

Ida

sta

sty

cli

imp

txtptr

txtptr

nopage

txtptr+1

getint

leng

leng+ 1

arg

c64

C64 + 1

arg

ram

ram + 1

arg

#0

limit

$b248

exp

#$10

r128

#8

inside

#2

toobig

bank

cmd

#0

exp +10

exp+ 9

;open ram

#$f5

1

1

exp

#$90

exp + 1

txtptr

notb

txtptr+1

txtptr

exp

areg

c64

xreg

C64 + 1

yreg

1

oldvec

;dim in basic text

;search next command

l

;update basic pointer

;get# bytes

;get c64 memory start

;get external ram start

;get bank

;check if out of range

;illegal quantity

;check ram size

;max bank for 512k + 1

;max bank for 128k + 1

;inc pointers

; no interrupts

; under basic and kernel

;old value

;temp value

;resetdma controller

;form command

;dim in basic text

;page boundry

;single byte

;return result

;return last address

;accessed in computer

; restore ram configuration

interrupts on

; back to basic

3100 subroutine to evaluate argument

3110;

3120 arg

3130

3140;

3150getint

3160

3170

3180;

3190 .end

«, ,

jsr

= *

jsr

jmp

$aefd

$ad9e

$b7f7

;must have comma

;eval expression

;fix it

September 1987: Volume 8, Issue O2


